Spectral atoms of unimodular random trees

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unimodular random trees

We consider unimodular random rooted trees (URTs) and invariant forests in Cayley graphs. We show that URTs of bounded degree are the same as the law of the component of the root in an invariant percolation on a regular tree. We use this to give a new proof that URTs are sofic, a result of Elek. We show that ends of invariant forests in the hyperbolic plane converge to ideal boundary points. We...

متن کامل

Processes on Unimodular Random Networks

We investigate unimodular random networks. Our motivations include their characterization via reversibility of an associated random walk and their similarities to unimodular quasi-transitive graphs. We extend various theorems concerning random walks, percolation, spanning forests, and amenability from the known context of unimodular quasi-transitive graphs to the more general context of unimodu...

متن کامل

Dynamics on Unimodular Random Graphs

This paper is centered on covariant dynamics on random graphs and random networks (marked graphs), which can be described as rules to navigate the vertices that are preserved by graph/network isomorphisms. Such dynamics are referred to as vertex-shifts here. Unimodular random networks can be heuristically described as networks seen from a vertex chosen uniformly at random, both in the finite an...

متن کامل

Branches in random recursive k-ary trees

In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2019

ISSN: 1435-9855

DOI: 10.4171/jems/923